On Approximation of the Time-Probabilistic Measures of a Resource Loss System with the Waiting Buffer

In this paper we consider a multi-server model in terms of a resource loss system with the waiting buffer and the multi-type of resources. A customer accepted for servicing occupies a random amount of resources with described distribution functions. Based on the assumptions of a Poisson arrival process and exponential service times, we analytically find the system of equilibrium equations. We proposed an approximation of the model with the single type of resources. We analytically find the system of equilibrium equations, solving which we get the stationary probabilities for the simpler model. For various probability distributions, we evaluated metrics of interest such as the loss probability of the system, the average waiting time, the average number of customers, and the average resource requirements of blocked customers. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Авторы
Daraseliya A.V. , Sopin E.S. , Shorgin S.Y.
Сборник материалов конференции
Издательство
Springer Science and Business Media Deutschland GmbH
Язык
Английский
Страницы
282-295
Статус
Опубликовано
Том
1748 CCIS
Год
2023
Организации
  • 1 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 2 Institute of Informatics Problems, Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russian Federation
Ключевые слова
arithmetic probability distribution; multi-service network; queuing system; queuing system with resources; random amount of resources; resource loss system
Цитировать
Поделиться

Другие записи

Shcherbakova A.V.
Iberoamerica. Федеральное государственное бюджетное учреждение науки Институт Латинской Америки Российской академии наук. 2023. С. 199-213