Параметризация поверхности сложной геометрии

Среди тонкостенных конструкций, в том числе строительных конструкций и сооружений, эффективными по своим жесткостным и прочностным характеристикам являются оболочки сложной геометрии, которые выделяются архитектурной гармоничностью. Для более широкого применения оболочек сложной геометрии необходимо достоверно оценивать их напряженно-деформированное состояние. При этом составной частью расчета является этап параметризации срединной поверхности оболочек сложной геометрии. Различают оболочки сложной геометрии канонической и неканонической формы. Для оболочек неканонической формы срединная поверхность не может быть задана аналитическими формулами. При этом возникают трудности на этапе задания (параметризации) формы срединной поверхности. Задача усложняется, когда у фрагмента оболочки сложный контур и одна или несколько точек поверхности имеют фиксированные координаты. Для строительных конструкций это, например, наличие дополнительных внутренних опор. Представлена информация о сплайновом варианте МКЭ. Отмечены некоторые известные способы параметризации. Рассмотрен подход параметризации минимальной поверхности сложной формы, ограниченной четырьмя криволинейными контурами и заданной (фиксированной) координатой одной внутренней точки поверхности. Описан алгоритм построения пространственной сети, а также определения координат, компонент метрического тензора и символов Кристоффеля, необходимых при решении задач параметризации в сплайновом варианте метода конечных элементов.

Among thin-walled structures, including building structures and constructions, shells of complex geometry are effective in their rigidity and strength characteristics, which are also distinguished by architectural harmony. For a wider application of shells of complex geometry, it is necessary to reliably assess their stress-strain state. In this case, an integral part of the calculation is the parametrization stage of the median surface of shells of complex geometry. There are shells of complex geometry of canonical and non-canonical forms. For shells of non-canonical shape, the median surface cannot be defined by analytical formulas. At the same time, difficulties arise at the stage of specifying (parameterizing) the shape of the median surface. The task becomes more complicated when the shell fragment has a complex contour and one or more surface points have fixed coordinates. For building structures, this is, for example, the presence of additional internal supports. Information about the spline version of the FEM is presented. Some well-known parametrization methods are noted. The approach of parametrization of a minimal surface of a complex shape bounded by four curved contours and a given (fixed) coordinate of one inner point of the surface is considered. An algorithm for constructing a spatial network, as well as determining coordinates, metric tensor components and Christoffel symbols necessary for solving parametrization problems in the spline version of the finite element method is described.

Авторы
Якупов С.Н.1 , Низамова Г.Х. 2
Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
5
Язык
Русский
Страницы
467-474
Статус
Опубликовано
Том
18
Год
2022
Организации
  • 1 Федеральный исследовательский центр «Казанский научный центр РАН»
  • 2 Российский университет дружбы народов
Ключевые слова
complex geometry; fixed surface point; parametrization; network construction algorithm; spatial coordinates; metric tensor components; Christoffel symbols; сложная геометрия; фиксированная точка поверхности; параметризация; алгоритм построения сети; пространственные координаты; компоненты метрического тензора; символы Кристоффеля
Дата создания
28.12.2023
Дата изменения
28.12.2023
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/99187/
Поделиться

Другие записи

Gil-Oulbé Mathieu, Daou Tiékolo, Mariko Ousmane
Строительная механика инженерных конструкций и сооружений. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 18. 2022. С. 458-466
Гришин Г.Е., Тихонов Г.И., Саврасов И.П., Окольникова Г.Э.
Строительная механика инженерных конструкций и сооружений. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 18. 2022. С. 475-484