Existence and uniqueness results for an inverse problem for a semilinear equation with final overdetermination

In the present paper, unique solvability of a source identification inverse problem for a semilinear equation with a final overdetermination in a Banach space is investigated. Moreover, the first order of accuracy Rothe difference scheme is presented for numerically solving this problem. The existence and uniqueness result for this difference scheme is given. The efficiency of the proposed method is evaluated by means of computational experiments. © 2018, University of Nis. All rights reserved.

Авторы
Sazaklioglu A.U.1, 2 , Erdogan A.S.3 , Ashyralyev A. 4, 5, 6
Журнал
Издательство
University of Nis
Номер выпуска
3
Язык
Английский
Страницы
847-858
Статус
Опубликовано
Том
32
Год
2018
Организации
  • 1 Department of Astronautical Engineering, University of Turkish Aeronautical Association, Ankara, 06790, Turkey
  • 2 Department of Mathematics, Istanbul University, Istanbul, 34452, Turkey
  • 3 Sigma Labs, Satbayev University, Almaty, 050013, Kazakhstan
  • 4 Department of Mathematics, Near East University, Mersin 10, Nicosia, Turkey
  • 5 Institute of Mathematics and Mathematical Modeling, Almaty, 050010, Kazakhstan
  • 6 Peoples’ Friendship University of Russia, Moscow, 117198, Russian Federation
Ключевые слова
Existence; Finite difference method; Inverse problem; Semilinear parabolic equations; Uniqueness
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/7359/