A note on the nonlocal boundary value problem for a third order partial differential equation

The nonlocal boundary-value problem for a third order partial differential equation in a Hilbert space with a self-adjoint positive definite operator is considered. Applying operator approach, the theorem on stability for solution of this nonlocal boundary value problem is established. In applications, the stability estimates for the solution of three nonlocal boundary value problems for third order partial differential equations are obtained. © 2018, University of Nis. All rights reserved.

Авторы
Belakroum K.1 , Ashyralyev A. 2, 3, 4 , Guezane-Lakoud A.5
Журнал
Издательство
University of Nis
Номер выпуска
3
Язык
Английский
Страницы
801-808
Статус
Опубликовано
Том
32
Год
2018
Организации
  • 1 Department of Mathematics, Fréres Mentouri University, Constantine, Algeria
  • 2 Department of Mathematics, Near East University, Mersin 10, Nicosia, Turkey
  • 3 Friendship’ University of Russia (RUDN University), Ul Miklukho Maklaya 6, Moscow, 117198, Russian Federation
  • 4 Institute of Mathematics and Mathematical Modeling, Almaty, 050010, Kazakhstan
  • 5 Laboratory of Advanced Materials, Mathematics Department and Faculty of Sciences, Badji Mokhtar Annaba University, P.O. Box 12, Annaba, 23000, Algeria
Ключевые слова
Boundary value problems; Hilbert space; Self-adjoint positive definite operator; Third order partial differential equation; Well-posedness
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/7331/