On the half-plane Dirichlet problem for differential-difference elliptic equations with several nonlocal terms

The following Dirichlet problem is investigated: uxx + Σm k=1 ak uxx(x + hk; y) + uyy = 0; x ∈ (-∞;+ ∞); y ∈ (0;+ ∞); u|y=0 = u0(x); x ∈ (-∞;+ ∞);, where the coefficients ak and hk = 1, m, are real parameters (no commensurability of the translations is assumed), while the boundary-value function u0 is continuous and bounded. Such problems arise in various applications such as the multi-layer plates and envelopes theory, the diffusion processes theory (including biomathematical applications), models of nonlinear optics, etc. © EDP Sciences, 2017.

Авторы
Редакторы
-
Издательство
EDP Sciences
Номер выпуска
6
Язык
Английский
Страницы
130-143
Статус
Опубликовано
Подразделение
-
Номер
-
Том
12
Год
2017
Организации
  • 1 JSC Concern Sozvezdie, Voronezh, Russian Federation
  • 2 RUDN University, Moscow, Russian Federation
Ключевые слова
Differential-difference equations; Elliptic problems; Non-commensurable translations
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/5916/