Regularized Lienard-Wiechert fields in a space with torsion

We consider the equations of covariantly constant vector fields (CCVF) in a space with torsion determined by its trace. The latter is interpreted as a form of the electromagnetic (EM) 4-potentials and, on a fixed metric background, turns out to be fully determined by the CCVF equations. When the metric is Minkowskian, the above equations possess two topologically distinct solutions, with the associated EM fields being asymptotically of Lienard-Wiechert type and having distributed sources, with a fixed (“elementary”) value of the electric charge. One of the solutions is everywhere regular whereas the other is singular on a 2-dimensional shell. The propagation speed of the EM fields depends on the local charge density and only asymptotically approaches the speed of light. © 2015, Pleiades Publishing, Ltd.

Авторы
Kassandrov V.V. 1 , Rizcallah J.A.2
Редакторы
-
Издательство
-
Номер выпуска
4
Язык
Английский
Страницы
273-278
Статус
Опубликовано
Подразделение
-
Номер
-
Том
21
Год
2015
Организации
  • 1 Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia, Moscow, Russian Federation
  • 2 School of Education, Lebanese University, Beirut, Lebanon
Ключевые слова
-
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/4499/