This study delves into possible mechanisms underlying the stimulating influence of UC-MSCs transplantation on functional and structural recovery of ischemic skeletal muscles. Limb ischemia was created in Sprague-Dawley rats by excision of femoral and popliteal arteries. Allogeneic rat PKH26-labeled UC-MSCs were administered by direct intramuscular injection. Animals of experimental group responded to the transplantation by improvement in their locomotor function as assessed by the rotarod performance test on day 9 and 29 after transplantation. Histomorphometric analysis showed that relative area of the lesions in the experimental group was significantly smaller than in the control group at all time points during the observation. Calculated densities of microcirculation vessels within the lesions were significantly higher in the experimental group than in the control group on day 10 after transplantation. Only a part of the transplanted allogeneic UC-MSCs survived within the ischemic muscle tissue, and a considerable portion of these surviving cells were found alongside the VEGF-producing preserved muscle fibers. The PKH26 label was not found within the walls of capillaries or larger blood vessels. The administration of allogeneic UC-MSCs significantly increased the proportion of M2 macrophages, exhibiting proangiogenic and anti-inflammatory properties, for at least 10 days following the transplantation.