A recursive algorithm based on the maximum principle of pontryagin

This article reports findings in designing a conceptual optimal control algorithm based on the maximum principle of Pontryagin and of the steepest descent type for a relaxed version of the original problem. Allowing the relaxation of initial condition in order to rewrite the two boundary value problem as one with boundary conditions in the same endpoint, key properties of this algorithm are proved. Then, some results are obtained by using an optimization algorithm of the same type for which off-the-shelf routines taking into account the numerical issues, which are always tricky for infinite dimensional problems. © 2018 IEEE.

Авторы
Pereira F.L. 1, 2 , Gama S.3 , Arafa N.4, 5 , Chertovskih R.6, 7
Редакторы
-
Издательство
Institute of Electrical and Electronics Engineers Inc.
Номер выпуска
-
Язык
Английский
Страницы
288-293
Статус
Опубликовано
Подразделение
-
Ссылка
-
Номер
8514293
Том
-
Год
2018
Организации
  • 1 SYSTEC, FEUP, Porto University, Portugal
  • 2 RUDN University, Moscow, Russian Federation
  • 3 CMUP, FCUP, Porto University, Portugal
  • 4 SYSTEC, CMUP Porto University, Portugal
  • 5 Aswan University, Egypt
  • 6 SYSTEC, Porto University, Portugal
  • 7 Samara National Research University, Russian Federation
Ключевые слова
Gledzer model; Maximum principle; Optimal control; Optimal control algorithms
Дата создания
04.02.2019
Дата изменения
04.02.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/36275/