Представлено полное интегрирование уравнений кинематики и динамики движения самолёта. Рассмотрены различные применения полученных интегралов к анализу траекторий. Уравнения динамики получены в предположении, что разница между ускорением, вызванным аэродинамической подъёмной силой, и ускорением тяги не меняется, направление курса самолёта относительно продольной оси остаётся постоянным, угол атаки и угол скольжения равны нулю. Общее решение состоит из шести первых интегралов уравнений движения и описывает множество траекторий в вертикальной плоскости. Показано, что уравнения динамики могут быть получены и проинтегрированы в замкнутой форме при более общих предположениях. Рассматривается задача определения величины тяги, соответствующей данной траектории, заданной уравнением связи. Строится уравнение возмущений связи, имеющее асимптотически устойчивое тривиальное решение. Предлагаемый метод построения интегралов может быть использован в задачах построения траекторий космических аппаратов, ракет и спускаемых аппаратов, а также при проектировании бортовых систем целеуказания и наведения. Приводится иллюстрационный пример.
A complete analytical integration of the aircraft kinematic and dynamic equations of motion is presented. Different applications of defined integrals to trajectory analysis are considered. The dynamic equations are obtained under the assumptions, that acceleration due to aerodynamic lift, the difference between the accelerations due to propulsive thrust and aerodynamic drag are not changed, the aircraft body rate about the velocity axis is zero and the sideslip angle is zero. The general integral of these equations consists of six independent first integrals of motion and describes a class of non-steady flight trajectories in a maneuver plane. It will be shown that the dynamic equations can be derived and completely integrated in a closed-form for more general assumptions. The problem of computing thrust for a given trajectory has been considered. The trajectory is defined by constraint equation. Constraints stabilization equations, which have asymptotically stable trivial solution, are constructed. Explicitness can make the integrals applicable to modeling the trajectories of spacecraft, re-entry vehicles and missiles, and to the design of on-board targeting and guidance. An illustrative example is presented.