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A complete analytical integration of the aircraft kinematic and dynamic equations of motion is
presented. Different applications of defined integrals to trajectory analysis are considered. The
dynamic equations are obtained under the assumptions, that acceleration due to aerodynamic
lift, the difference between the accelerations due to propulsive thrust and aerodynamic drag are
not changed, the aircraft body rate about the velocity axis is zero and the sideslip angle is zero.
The general integral of these equations consists of six independent first integrals of motion and
describes a class of non-steady flight trajectories in a maneuver plane. It will be shown that the
dynamic equations can be derived and completely integrated in a closed-form for more general
assumptions. The problem of computing thrust for a given trajectory has been considered.
The trajectory is defined by constraint equation. Constraints stabilization equations, which
have asymptotically stable trivial solution, are constructed. Explicitness can make the integrals
applicable to modeling the trajectories of spacecraft, re-entry vehicles and missiles, and to the
design of on-board targeting and guidance. An illustrative example is presented.
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1. Introduction

This paper presents a complete analytical integration of the aircraft kinematic and
dynamic equations obtained under the following assumptions: (a) acceleration due to
aerodynamic lift, and the difference between the accelerations due to propulsive thrust
and aerodynamic drag are not changed; (b) the aircraft body rate about the velocity
axis is zero; (c¢) the sideslip angle is zero. It will be shown that the general integral of
these equations consists of six independent first integrals which lead to the closed-form
analytical solutions. The studies of the existing literature show that the aircraft equations
can be integrated in a closed-form for some specific cases of quasi-steady and non-steady
flights, including the cases of climb and cruise with constant altitude, velocity or lift
acceleration, negligible flight path angle or small angle of attack [1,2]. In some cases
of optimal quasi-steady cruise trajectories, the equations of motion have been implicitly
integrated or reduced to quadratures [2]. It should be noted that the studies presented
in this paper were initiated with the purpose of integration of the 3rd order differential
equation,
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obtained for the nonlinear model of the aircraft tracking problem under the following
assumptions: (1) acceleration due to aerodynamic lift, and the difference between the
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accelerations due to propulsive thrust and aerodynamic drag are not changed; (2) the
aircraft body rate about the roll axis is zero; (3) the angle of attack and the sideslip angle
are zero [3-5]. Note that the left hand side of Eq. (1) represents the jerk vector, and its
expression does not explicitly depend on the accelerations due to thrust, drag and lift.
Analysis show, however, that as the drag is a function of the square of the velocity, it
would be very difficult to hold the lift, and the thrust-drag accelerations constant with
zero angle of attack. In this paper, it will be shown that Eq. (1) can also be derived
and completely integrated in a closed-form for a more general assumptions (a-c) with
non-zero and variable angles of attack. It is demonstrated that the assumptions (a-b)
can significantly extend the applicability of Eq. (1). Explicitness can make the integrals
applicable to modeling the trajectories of spacecraft, re-entry vehicles and missiles, and
to the design of on-board targeting and guidance [4].

2. Equations and Integrals for Non-steady Flight

Consider the F-frame formed by the triad of orthogonal unit vectors el e, el” and
with the origin O at the aircraft center of mass (COM): the unit vector ef” is aligned with
the velocity vector, el” forms the angle ¢ with lift and e’ completes the right handed
system (see Fig. 1). The angle ¢ is measured in the Oel el -plane. It is assumed that
the non-steady flight trajectory lies in a vertical plane xz containing ef” and el’. Then
if P is the sum of external forces acting on the aircraft, that is thrust, weight, drag and
lift, then [1]
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Figure 1. To the nonlinear aircraft model

P=W+T+D+L

can be rewritten in the form:
P = (Tcosa— D — ggsinf)el + [(Tsina + L) cos ¢ — go cosfles ,

where @ = a + ar is the angle between the thrust vector and the velocity vector. If
a = vel +vfel, then with the assumptions given above, the Newton’s second law
yields the following equations valid in the maneuver zz-plane [3]:

D= —gosinf+c;, v0=—gycosh+cy, ¢ =0, é9=0, (2)
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where

= QWO(TCOS@— D), ¢

= g—O(Tsina—kL) Ccos ¢ (3)
w

with ¢ = const. Complete analytical integration of Eqs. (2) and application of the
resulting solutions to trajectory analysis is the main purpose of this paper. As will be
shown below, the complete integration of Eqgs. (2) reveals a general integral which consists
of six independent first integrals with their constants. These constants will be denoted
below by 7;, (i = 1,...,6), and one can accept that n; = ¢; = const and 7, = ¢y = const.
Egs. (2) are valid for a flight with the assumptions (a-c) in the maneuver plane. The
first integrals of Eqgs. (2) for n; and 72 represent the relationships between the velocity
magnitude, flight path angle, the propulsive and aerodynamic accelerations.

3. Integrals for Velocity Vector, Time and Position Vector
Integrals for magnitude of velocity vector

In this subsection, it will be shown that the first two equations of Egs. (2) can be
explicitly integrated in elementary and transcendental functions in terms of the angle 6.
By considering 6 as an independent variable instead of time, ¢, we have v = dv/dt =
dv/df#df/dt. Then by eliminating df/d¢ from Egs. (2), one can obtain

dv _; —gosinf+c;
oyl YT
do —gocosf + ¢y’

(4)

which can be integrated in the form [6]:

24 7
’()(9) = 773(CL+ bSile)_l exp | — arctanw , [a2 > bQ],
dl dl
7 (A/d2)
= in )1 | tanT £ ds 2 _ .
v(0) = n3(a+ bsinx) [atan:z+d4} , [a® < b7, (5)
A s
— . —1 4 - T 9 _ 9
v(0) = n3(a+ bsinz) exp[a tan (x 4)] , [a® = b7,

where 73 is the integration constant, x = 6 4+ 7, T = 2/2 and a + bsinz # 0, and the
following constants are used:

A=c, a=c, b=-B=—g, (6)

dlz\/QQ—bz, d2:\/b2—a2, d3:b—vb2—a2, d4:b+\/b2—(12. (7)

Note that in a particular case when a+bsin x = 0, the system of equations in Egs. (2)
describes a motion with constant v and 6. This case is of a very limited theoretical and
practical interest, and not considered in this paper.

Integrals for time

Once v = v(#) is determined, the second equation of Eqs. (2) can be integrated as:

T—y

fo / _v@dr (8)

a+bsinz
To—7Y
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which can be reduced to the following final forms:

24 atanier] <A+bcosx a

t=—-—-—— = arct — > > b
A2+a2—b2exp[d1 aretan =g, a+bsinx+A>+n4’ [ > ¥,

A atanx—i—dg} <A+bcosx a)
1 +7747

2 2
S S a B, (9
A rar—p2 [dg Y atanz + dg [ <&, (9)

a+bsina:+A
3 A r A+bcosz a 9 .9
t=—gexp|—tan (> — - )| | s+ =0
A4z P [a o (2 4)] (a(l—l—sinm) - A) + [a )

where 74 is the new integration constant, sinx # —1. As Eq. (1) is a 3rd-order vector
differential equation, which describes the motion in the maneuver plane, its complete
integration would require to find siz independent first integrals with six scalar integration
constants of motion in the maneuver plane. So far, four independent first integrals and
four new constants have been found above, that is 7, and 72 in Eq. (2), n3 in Egs. (5)
and 74 in Egs. (9). Eqgs. (5) and Egs. (9) also represent the general solution of Egs. (2)
with constants 73, 14, ¢1 and cs.

Integrals for position vector components

It can be shown that the magnitude of the velocity vector and angle between the
velocity vector and the local horizon are not enough to uniquely determine the position
of the aircraft in the maneuver plane. If v =wvcosfi, —vsinfi, and r = pi, —hi,, where
p and h are the aircraft horizontal and vertical coordinates (crossrange and downrange
respectively), then the equation v = I written in terms of its components yields

p=wvcosb, h =wvsin#. (10)

Noting that § = # — 7/2, p = dp/dadz/dt and h = dh/dzdz/dt, one can rewrite
Egs. (10) as
dp  dt . dh dt

I = Uy Sin e, T = Vg 8T (11)

Integration of Egs. (11) yields the aircraft coordinates p and h:

[4A tanz + b

p(x) = Pexp d—larctan aarz:—i—} +ns,  [a® > b7,
24 atanT + ds3 9 _ 9

=P —In——— b 12

pla) = Pesp |2 nataanJm, (@ < ¥ (12)
[2A x T

p(z) = Pexp jtan (2—4)} + 75, [a® = b?],

and

[4A atanZ + b 9 12

h(z) = Qexp aarCtanT +n6, [a° > b7,
24 atan® + d3 9 _ 9

h(z) = —n—— b 1

(5) = Qewp | natan£+d4]+n6, 0 < ¥, (13)
[2A r

h(z) = Qexp 7’5311 <2—4>] + e, [a* = b7,
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where 75 and ng are the new integration constants, & = x/2, and P and @ are known
functions of z. Egs. (12) and (13) represent the first integrals of Egs. (10) (and Egs. (2)),
and allow us to determine the aircraft’s horizontal and vertical cartesian coordinates
(crossrange and downrange) in the maneuver plane. The first integrals presented in
Egs. (2), (5), (9), (12) and (13) with constants 7, ¢ = 1,...,6 represent the general
integral of Eq. (2). Any point on the trajectory can be considered as a target point and
the constants can be chosen to achieve this point. Consequently, the targeting problem
can be solved at any desired point thereby providing a foundation for the development
and design of the targeting and guidance schemes.

4. Expressions for Thrust and Angle of Attack

As mentioned above, the assumptions (a)—(c) can be justified and validated by ana-
lyzing the thrust, drag and list accelerations using the solutions for altitude and velocity,
and by comparing the results for the angle of attack and the thrust to existing ranges of
these quantities [2,7,8]. The assumptions (a) and (b) mean that

T o — D Tsina+ L
e c1 = const, (Tsina + L) cos ¢ = ¢y = const, (14)
m m
where [1]
4 1 1
¢ =const, m=-—, D=—-Cpp,Sv®, L= -Crp,Sv?,
g0 2 2

and it is assumed that ¢ # 7/2 + km, k = 0, 1, 2 ..., the drag and lift coefficients,
Cp and Cp, can be computed according to Ref. [2] and the air density, p, is changed
according to the exponential law. From Eq. (14) one can obtain

mco

(mey + D) sina — < - L) cosa = 0. (15)

cos ¢

Eq. (15) is a transcendental equation and solvable for o = a(h,v) only by numerical
schemes. Once o = a(h,v) is determined, then the thrust can be computed as

T = \/(mcl+D)2+ (mc2 —L>2. (16)

cos ¢

5. Illustrative Example

Consider the example of a flight simulation using the analytical solutions presented
above for a? > b%. One can compute magnitude of velocity vector, time, altitude and
downrange in terms of the angle 6 which is assumed to satisfy the inequality: 6y < 0 < 6.
The following values have been accepted: t; = 0.0, vg = 250, go = 9.8, b = —9.8,
po = 28500, hy = 7000, W = 5000, a = 10.0, A € [0.1,0.5], p = —10°, Af = 65°. The
results of the simulations for this case are illustrated in figures 2-4. The plots of the
angle of attack and the thrust vs magnitude of velocity are presented in figures 2 and 3.
These figures show that when the velocity magnitude is decreased in the beginning of
the simulation for ~ 10 ft/s, « is increased for ~ 0.5° and T is decreased for ~ 45 lbs.
Analysis has also shown that an increase in values of W leads to the higher values for a
and T, and also T is increased together with altitude and Mach number, computed as
M = v/v,, where v, is the speed of sound [2]. From Fig. 4 it can also be seen that each
additional value 0.1 to A would yield an increase of the final altitude by only 100 m.
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Figure 2. Angle of attack vs magnitude
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Figure 4. Downrange vs altitude

Computation of Thrust with Stabilization of Constraints

Let the aircraft trajectory be given in the form h = f(p). Then the equations of a
programmed constraint and its derivative are y = h — f(p) and % = v, with [9]

df(p)

vy = —v(sind + f'(p)cosh), f(p) = a4 (17)
The equations of the perturbed constraint can be given as
d d
digli Y %:K(y,l/y,p,h,lj,e), K(O707p7h7V70) =0, (18)
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and in particular, dd”f = —cy — kv,. Egs. (2), (17) and (18) yield the equation with

respect to the thrust:

dv. dv , | ) de dp
dity = (sinf + f'(p) cos0) + v (f'(p)sinf — cosH)E —vf’(p) COSGE,
df’(p)
f(p) = :
(p) = =4 )
After substitution of these expressions into Eqgs. (18), which provides
d d de d
% = —d—i(siné’ + f'(p) cos8) + v(f'(p) sind — cos H)E —vf"(p) cos Gd—i,

one can obtain the equation for determination of 7: T'= A/B, where

A=mK — (sinf + f'(p) cosf)(mgsind + D)—
— (f"(p)sin@ — cos ) (—mg cos 6 + L cos ¢)+
+mv2f"(p) cos? 6,
B = —(sinf + f'(p) cos) cosa + (f'(p)sinf — cos ) cos psina.

Assume now that K = —cy — kv, = c(f(p) — h) + kv(sinf + f'(p) cos0), with ¢ > 0,
k > 0. Then one can show that

A = —mch+ mkvsin€ —mg + D sin @ + L cos ¢ cos 0+
+mef(p) + (mkvcos@ — D cos — Lcos psin @) f'(p)+
+mv? f"(p) cos? 0,

B = —cosasin® — sin a cos ¢ cos § + (cos acos 0 + sin acos psin 6) f/(p).

7. Conclusions

The general integral of the aircraft’s kinematic and dynamic equations of motion in
the non-steady flight conditions has been obtained. These equations represent the 3rd
order vector differential equation, the general integral of which consists of six independent
first integrals with six corresponding constants. All integrals are expressed in elementary
and transcendental functions in terms of the flight path angle. The applications may also
include the flight trajectories in the transonic, low and high supersonic conditions. These
results can find potential applications in the design of on-board targeting and guidance
schemes.
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IIpescraBieno moHOE UHTEIPUPOBAHNE YPABHEHUI KUHEMATUKH U JTUHAMUKU JIBUXKEHUS Ca-
MoJiéTa. PaccMOTpeHbl pa3iindHble IPUMEHEHUs! IOJIyYeHHbIX MHTErPAJIOB K aHAJINU3Y TPAeKTO-
puii. YpaBHEHHSI JUHAMHUKYU IIOJIYYE€HBl B IPEIIOJIOKEHHM, ITO PA3HUNA MEXKY YCKOPEHHEM,
BBI3BAHHBIM a3POIMHAMIYIECKON IO BEMHON CUJION, M YCKOPEHNEM TST'Y He MEHSETCs, HallpaBJle-
HHUE Kypca CaMOJIETa OTHOCUTEJIBHO IIPOJIOJIBHON OCH OCTAETCS IOCTOSTHHBIM, YIOJI aTaKd U yIoJI
CKOJIbXKEeHMsI paBHBI HyJ10. OblIlee peleHre COCTOUT M3 IIECTH [I€PBBIX MHTEIPAJIOB yPABHEHUN
JIBU2KEHUS] M OIIMCHIBAET MHOXKECTBO TPAEKTOPUIl B BepTHKaJbHON mtockoctu. [lokazano, dro
ypaBHEHUS JUHAMHKU MOTYT OBIThH IOJIyYeHBbI W MPOWHTEIPUPOBAHBI B 3aMKHYTOI dopme mpu
OoJtee OOITUX IIpedIIOJIOXKeHuAX. PaccMarpuBaeTcs 3a7a4a OIpeiesIeHNs] BeJIMUUHBI TATH, COOT-
BETCTBYIOIIEH TaHHOM TPAEKTOPUH, 33JaHHON ypaBHeHneM cBa3u. CTPOUTCS ypaBHEHUE BO3MY-
[EHU CBSA3M, NMEIOIIee ACUMITOTUYIECKN YCTONYINBOE TPUBHAJbHOE pemrenne. IIpemraraembrit
MEeTO/I, IOCTPOEHUSI NHTErPAJIOB MOXKET OBITh MCIOJIb30BaH B 33/1a4aX IOCTPOEHUS TPAEKTOPHU
KOCMHUYIECKHUX allapaToB, PAKET U CIIYCKAEMBIX AIIapaTOB, a TAKKe IIPH MPOEKTUPOBAHUN OOP-
TOBBIX CHCTEM IieJIeyKa3aHusl U HaBeJeHus. |IpuBoauTCa MIIIOCTPAIIMOHHBIN IPUMED.

KuroueBble cJioBa: aHAJIUTUYECKOE WHTErPUPOBaHUE, OOIIUN WHTErpasl, aHAJIUTUIECKue
pellleHns, HeJIMHEeHAS MOJIeJIb CaMOJIETa, TPOTPAMMHBIE CBA3U
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