Hardy inequality with three measures on monotone functions

Characterization of Lv p[0, ∞) - L μ q[O, ∞) boundedness of the general Hardy operator (Hsf)(x) =(∫[0,x] fsudλ) 1/s restricted to monotone functions f ≥ 0 for 0 < p.q.s < ∞ with positive Borel σ -finite measures λ, μ and v is obtained.

Авторы
Johansson M.1 , Stepanov V.D. 2 , Ushakova E.P.3, 4
Издательство
Element D.O.O.
Номер выпуска
3
Язык
Английский
Страницы
393-413
Статус
Опубликовано
Том
11
Год
2008
Организации
  • 1 Department of Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
  • 2 Department of Mathematical Analysis and Function Theory, Peoples Friendship University, 117198 Moscow, Russian Federation
  • 3 Computing Centre of Far Eastern Branch, Russian Academy of Sciences, 680000 Khabarovsk, Russian Federation
  • 4 Department of Mathematics, Uppsåla University, SE-751 06 Uppsåla, Sweden
Ключевые слова
Hardy operator; Integral inequalities; Measures; Monotone functions; Weights
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/3157/