Bifurcation theorems via second-order optimality conditions

We present a new approach to bifurcation study that relies on the theory of second-order optimality conditions for abnormal constrained optimization problems developed earlier by the first author. This theory does not subsume the "primal" description of the feasible set in terms of tangent vectors or in any other way. As a result, we obtain new sufficient conditions for bifurcation, which are to some extent complementary with respect to the known bifurcation theory. © 2001 Academic Press.

Авторы
Arutyunov A.V. 1 , Izmailov A.F.2
Редакторы
-
Издательство
Academic Press Inc.
Номер выпуска
2
Язык
Английский
Страницы
564-576
Статус
Опубликовано
Подразделение
-
Номер
-
Том
262
Год
2001
Организации
  • 1 Peoples Friendship University, Miklukho-Maklaya Str. 6, 117198, Moscow, Russian Federation
  • 2 Computing Center of the Russian Academy of Sciences, Vavilova Str. 40, 117967, Moscow, Russian Federation
Ключевые слова
2-normality; Bifurcation; Constrained optimization; Nonlinear operator equation; Second-order optimality conditions
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/306/