On the convergence rate of an iterative method for the linearized navier-stokes equations

A considerably simpler and much more efficient method for Fréchet derivative inversion has been reported. Specifically, the Fréchet derivative is inverted by the method of successive approximations, which preserves the high convergence rate of the series from converges in the class of strong solutions at the rate of a geometric progression with a common ratio arbitrarily close to zero. The efficiency of the implementation of Newton's method as applied to nonlinear problem is determined primarily by the efficiency of the numerical method used to solve problem.

Авторы
Редакторы
-
Журнал
Издательство
-
Номер выпуска
3
Язык
Английский
Страницы
462-464
Статус
Опубликовано
Подразделение
-
Номер
-
Том
81
Год
2010
Организации
  • 1 Peoples' Friendship University of Russia, ul. Miklukho-Maklaya 6, Moscow, 117198, Russian Federation
Ключевые слова
Common ratio; Convergence rates; Efficient method; Geometric progressions; Linearized navier-stokes equations; Newton's methods; Nonlinear problems; Strong solution; Successive approximations; Linearization; Newton-Raphson method; Navier Stokes equations
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2768/