Solution to the stationary problem of glacier dynamics

A stationary problem of the non-Newtonian fluid dynamics is applied to the modeling of an alpine glacier motion with Dirichlet boundary conditions corresponding to the ice increment in the upper part of the glacier and to the ice meltdown in its lower part. The existence of a weak solution in a functional class with the first-order derivatives integrable to the power q > 6/5 is established for sufficiently small given boundary data. The proof is largely based on regularizing weak solutions and using properties of monotone operators. © 2010 Pleiades Publishing, Ltd.

Авторы
Bogovskii M.E. 1 , Mantello L.2 , Yashima-Fujita H.2
Редакторы
-
Издательство
-
Номер выпуска
10
Язык
Английский
Страницы
1734-1745
Статус
Опубликовано
Подразделение
-
Номер
-
Том
50
Год
2010
Организации
  • 1 Peoples Friendship University of Russia, ul. Miklukho-Maklaya 6, Moscow 117198, Russian Federation
  • 2 Università di Torino, via Carlo Alberto 10, Torino 10123, Italy
Ключевые слова
Generalized solutions; Glacier dynamics; Monotone operators; Non-Newtonian fluid; Regularization of solutions; Stationary problem; Weak solutions
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2686/