Markov theorem for free links

The notion of free link is a generalized notion of virtual link. In this paper we define the group of free braids, prove the Alexander theorem, that all free links can be obtained as closures of free braids and prove a Markov theorem, which gives necessary and sufficient conditions for two free braids to have the same free link closure. Our result is expected to be useful for study of the topology invariants for free knots and links. © 2012 World Scientific Publishing Company.

Авторы
Manturov V.O. 1 , Wang H.2
Редакторы
-
Издательство
-
Номер выпуска
13
Язык
Английский
Страницы
-
Статус
Опубликовано
Подразделение
-
Номер
1240010
Том
21
Год
2012
Организации
  • 1 Peoples' Friendship University of Russia, Ordjonikidze St., 3, Moscow 119991, Russian Federation
  • 2 Mathematical Sciences Center, Tsinghua University, Jin Chun Yuan West Bldg., Haidian Dist., Beijing 100084, China
Ключевые слова
Alexander theorem; detour move; free braid; free link; Knots; L-move; link; Markov theorem; virtual knot; virtual link; virtualization move; Yang-Baxter equation
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2244/