Construction of Equations of Dynamics of a Given Structure Based on Equations of Program Constraints

We consider the problem of constructing a system of differential equations from a given set of constraint equations and reducing them to the form of Lagrange equations with dissipative forces that ensure stabilization of the constraints. We determine the dissipative function from the equations of constraint disturbances. We use modified Helmholtz conditions to represent differential equations in the form of Lagrange equations. We give the solution of the Bertrand problem of determining the central force under the action of which a material point performs stable motion along a conic section. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

Авторы
Издательство
Springer New York LLC
Номер выпуска
4
Язык
Английский
Страницы
609-619
Статус
Опубликовано
Том
287
Год
2025
Организации
  • 1 RUDN University, Moscow, Russian Federation
Ключевые слова
Bertrand problem; constraint equations; dissipative function; Helmholtz conditions; Lagrange equation
Цитировать
Поделиться

Другие записи