В работе построено символьно-численное решение уравнений Максвелла, описывающее направляемые моды двумерного плавно-нерегулярного волновода в рамках нулевого приближения модели адиабатических волноводных мод. Система линейных алгебраических уравнений, получаемая в нулевом приближеним модели адиабатических волноводных мод, решена символьно. Дисперсионное уравнение решено численно методом продолжения по параметру.
In this work, a symbolic-numerical solution of Maxwell’s equations is constructed, describing the guided modes of a two-dimensional smoothly irregular waveguide in the zeroth approximation of the model of adiabatic waveguide modes. The system of linear algebraic equations obtained in this approximation is solved symbolically. The dispersion relation is solved numerically using the parameter continuation method.