Extinction in a finite time for solutions of a class of quasilinear parabolic equations

We study the property of extinction in a finite time for nonnegative solutions of 1 q ∂ ∂ t ( u q ) - Δ ( | Δ u | p - 2 Δ u ) + a ( x ) u λ = 0 for the Dirichlet Boundary Conditions when q > λ > 0, p > 1 + q, p > 2, a ( x ) > 0 and ω a bounded domain of R N ( N > 1). We prove some necessary and sufficient conditions. The threshold is for power functions when p > 1 + q while finite time extinction occurs for very flat potentials a ( x ) when p = 1 + q. © 2022 - IOS Press. All rights reserved.

Authors
Belaud Y.1, 2 , Shishkov A. 3, 4
Publisher
IOS Press
Number of issue
1-2
Language
English
Pages
97-119
Status
Published
Volume
127
Year
2022
Organizations
  • 1 Laboratoire de Mathématiques et Physique Théorique, Université de Tours, UFR Sciences et Techniques, Parc de Grandmont, Tours, 37200, France
  • 2 Fédération de Recherche Denis Poisson, Laboratoire MAPMO Rue de Chartres Bât. Maths., Orleans Cedex 2, 45067, France
  • 3 Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Dobrovol'skogo str. 1, Slaviansk, 84116, Ukraine
  • 4 Peoples' Friendship University of Russia, Miklukho-Maklaya str. 6, Moscow, 117198, Russian Federation
Keywords
Extinction time; nonlinear eigenvalue problem; semi-classical limit
Date of creation
06.07.2022
Date of change
06.12.2022
Short link
https://repository.rudn.ru/en/records/article/record/84346/
Share

Other records