Approximate Solutions of the RSIR Model of COVID-19 Pandemic

The Reduced SIR (RSIR) model of COVID-19 pandemic based on a two-parameter nonlinear first-order ordinary differential equation with retarded time argument is developed. An algorithm aimed to forecast the COVID-19 pandemic development by approximate solution of RSIR model is proposed. The input data for this algorithm are the cumulative numbers of infected people on three dates (e.g., today, a week ago, and two weeks ago).

Authors
Pen'kov F.M.1 , Derbov V.L. 2 , Chuluunbaatar G. 3, 4 , Gusev A.A. 3, 5 , Vinitsky S.I. 3, 4 , Góźdź M.6 , Krassovitskiy P.M. 7
Publisher
Springer New York LLC
Language
English
Pages
53-64
Status
Published
Volume
616 IFIP
Year
2021
Organizations
  • 1 Al-Farabi Kazakh National University
  • 2 N.G. Chernyshevsky Saratov National Research State University
  • 3 Joint Institute for Nuclear Research
  • 4 Peoples’ Friendship University of Russia (RUDN University)
  • 5 Dubna State University
  • 6 Institute of Computer Science|University of Maria Curie-Skłodowska
  • 7 Institute of Nuclear Physics
Keywords
First-order ordinary differential equation with retarded time argument; Forecast the COVID-19 pandemic; Reduced SIR model

Other records

Гусниев М.А., Печникова В.В., Гусниев С.А., Гущин М.Ю., Гиоева З.В., Пшихачев А.М., Михалева Л.М.
Клиническая и экспериментальная морфология. Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт морфологии человека". Vol. 10. 2021. P. 39-46