GLOBAL WELL-POSEDNESS OF TWO INITIAL-BOUNDARY-VALUE PROBLEMS FOR THE KORTEWEG-DE VRIES EQUATION

Two initial-boundary-value problems for the Korteweg-de Vries equation in a half-strip with two boundary conditions and in a bounded rectangle are considered and results on local and global well-posedness of these problems are established in Sobolev spaces of various orders, including fractional. Initial and boundary data satisfy natural (or close to natural) conditions, originating from properties of solutions of a corresponding initial-value problem for a linearized KdV equation. An essential part of the study is the investigation of special solutions of a "boundary potential" type for this linearized KdV equation.

Авторы
Редакторы
-
Издательство
KHAYYAM PUBL CO INC
Номер выпуска
6
Язык
Английский
Страницы
601-642
Статус
Опубликовано
Подразделение
-
Ссылка
-
DOI
-
Номер
-
Том
20
Год
2007
Организации
-
Ключевые слова
-
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/8756/