Inverse moving source problem for time-fractional evolution equations: determination of profiles

This article is concerned with two inverse problems on determining moving source profile functions in evolution equations with a derivative order α ∈ (0, 2] in time. In the first problem, the sources are supposed to move along known straight lines, and we suitably choose partial interior observation data in finite time. Reducing the problems to the determination of initial values, we prove the unique determination of one and two moving source profiles for 0 < α ≤ 1 and 1 < α ≤ 2, respectively. In the second problem, the orbits of moving sources are assumed to be known, and we consider the full lateral Cauchy data. At the cost of infinite observation time, we prove the unique determination of one moving source profile by constructing test functions. © 2021 IOP Publishing Ltd

Авторы
Liu Y.1 , Hu G. 2 , Yamamoto M. 3, 4, 5, 6
Журнал
Издательство
Institute of Physics Publishing
Номер выпуска
8
Язык
Английский
Статус
Опубликовано
Номер
084001
Том
37
Год
2021
Организации
  • 1 Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, N12W7, Kita-Ward, Sapporo, 060-0812, Japan
  • 2 School of Mathematical Sciences, LPMC, Nankai University, Tianjin, 300071, China
  • 3 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
  • 4 Academy of Romanian Scientists, Ilfov, nr. 3, Bucuresti, Romania
  • 5 Accademia Peloritana dei Pericolanti, Palazzo Università, Piazza S. Pugliatti 1, Messina, 98122, Italy
  • 6 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
Ключевые слова
Inverse moving source problem; Time-fractional evolution equation; Uniqueness; Vanishing property
Цитировать
Поделиться

Другие записи