SMOOTH LOCAL NORMAL FORMS OF HYPERBOLIC ROUSSARIE VECTOR FIELDS

In 1975, Roussarie studied a special class of vector fields, whose singular points fill a submanifold of codimension two and the ratio between two non-zero eigenvalues lambda(1) : lambda(2) = 1 : -1 He established a smooth orbital normal form for such fields at points where lambda(1,2) are real and the quadratic part of the field satisfied a certain genericity condition. In this paper, we establish smooth orbital normal forms for such fields at points where this condition fails. Moreover, we prove similar results for vector fields, whose singular points fill a submanifold of codimension two and the ratio between two non-zero eigenvalues lambda(1) : lambda(2) = p : -q with arbitrary integers p, q >= 1.

Авторы
Pavlova N.G. 1, 2, 3 , Remizov A.O.1
Издательство
Independent University of Moscow
Номер выпуска
2
Язык
Английский
Страницы
413-426
Статус
Опубликовано
Том
21
Год
2021
Организации
  • 1 Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Russia
  • 2 Inst Control Sci RAS, Profsoyuznaya Str 65, Moscow 117997, Russia
  • 3 Peoples Friendship Univ RUSSIA, Mikluho Maklaya Str 6, Moscow 117198, Russia
Ключевые слова
Vector field; singular point; resonance; normal form
Цитировать
Поделиться

Другие записи

Sklifasovskaya A.P., Blagonravov M.L.
Бюллетень экспериментальной биологии и медицины Клеточные технологии в биологии и медицине. New York Consultants BureauSpringer / Автономная некоммерческая организация Издательство Российской академии медицинских наук. Том 170. 2021. С. 699-705