A NEW GENERALIZATION OF BOAS THEOREM FOR SOME LORENTZ SPACES Lambda(q)(omega)

Let Lambda(q)(omega), q > 0, denote the Lorentz space equipped with the (quasi) norm parallel to f parallel to(Lambda q(omega)) := (integral(1)(0) (f*(t)omega(t))(q)dt/t)(1/q) for a function integral on [0,1] and with omega positive and equipped with some additional growth properties. A generalization of Boas theorem in the form of a two-sided inequality is obtained in the case of both general regular system Phi = {phi(k)}(k=1)(infinity) and generalized Lorentz Lambda(q) (omega) spaces.

Авторы
Kopezhanova A.1, 2 , Nursultanov E. 3, 4 , Persson L.E.1, 5
Издательство
Element D.O.O.
Номер выпуска
3
Язык
Английский
Страницы
619-633
Статус
Опубликовано
Том
12
Год
2018
Организации
  • 1 Lulea Univ Technol, Dept Engn Sci & Math, SE-97187 Lulea, Sweden
  • 2 LN Gumilyov Eurasian Natl Univ, Fac Mech & Math, Satpayev St 2, Astana 010008, Kazakhstan
  • 3 RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
  • 4 Lomonosov Moscow State Univ, Kazakhstan Branch, Kazhymukan St 11, Astana 010010, Kazakhstan
  • 5 Artic Univ Norway, UiT, POB 385, N-8505 Narvik, Norway
Ключевые слова
Inequalities; two-sided inequalities; Fourier series; Boas theorem; generalized Lorentz spaces; regular systems; generalized monotone function
Цитировать
Поделиться

Другие записи