On the nonlocal well-posedness of a mixed problem in a half-strip for the generalized Korteweg-de Vries equation

Following his earlier work on generalized KdV equations [Trudy Moskov. Mat. Obshch. {bf 51} (1988), 54--94, 258; [msn] MR0983632 (90c:35172) [/msn]; Trudy Sem. Petrovsk. No.~13 (1988), 56--105, 256--257; [msn] MR0961429 (90c:35173) [/msn]], the author considers problems of well-posedness and solvability for the generalized KdV equation (*) u_t+u_{xxx}+au_x+(g(u))_x=f(t,x) on the half-strip (0,T)timesBbb R_+ (T>0,Bbb R_+equiv(0,+infty)) with the initial and boundary conditions u(t=0,x)=u_0(x) for xgeq 0 and u(t,x=0)=u_1(t) for 0leq tleq T. Here, a denotes an arbitrary real constant and the function g satisfies the conditions gin C^3(Bbb R) and g(0)=g'(0)=0. Using the additional condition |g(u)|leq c(|u|^{frac{10}{3}}+|u|) (uinBbb R) suggested by a condition first proposed by J. L. Bona and L. Luo [in {it Applied analysis (Baton Rouge, LA, 1996)}, 59--125, Contemp. Math., 221, Amer. Math. Soc., Providence, RI, 1999; [msn] MR1647197 (99m:35201) [/msn]], and taking u_0in H^1(Bbb R_+), u_1in H^1(0,T), u_0(0)=u_1(0), and fin L_2(0,T;H^1(Bbb R_+)), it is proved that equation (*) has a unique generalized solution u(t,x) on a certain Sobolev space X_T related to certain spaces introduced by C. E. Kenig, G. Ponce and L. Vega [Duke Math. J. {bf 59} (1989), no.~3, 585--610; [msn] MR1046740 (91d:35190) [/msn]].

Авторы
Faminskiĭ A.V.
Редакторы
Zachary Woodford W.
Издательство
Федеральное государственное бюджетное учреждение "Российская академия наук"
Номер выпуска
12
Язык
Английский, Русский
Страницы
115-125
Статус
Опубликовано
Номер
13
Том
13
Год
2001
Цитировать
Поделиться

Другие записи

Sabinin Lev V., Sabinina Ludmila L., Sbitneva Larissa V., Ungar Abraham A.
Aequationes Mathematicae. Birkhauser Verlag Basel. Том 56. 1998. С. 11-17