Construction of Multivariate Interpolation Hermite Polynomials for Finite Element Method

A new algorithm for constructing multivariate interpolation Hermite polynomials in analytical form in a multidimensional hypercube is presented. These polynomials are determined from a specially constructed set of values of the polynomials themselves and their partial derivatives with continuous derivatives up to a given order on the boundaries of the finite elements. The efficiency of the finite element schemes, algorithms and programs is demonstrated by solving the Helmholtz problem for a cube.

Сборник материалов конференции
Издательство
E D P SCIENCES
Язык
Английский
Статус
Опубликовано
Номер
02007
Том
226
Год
2020
Организации
  • 1 Joint Inst Nucl Res, Dubna, Russia
  • 2 Peoples Friendship Univ Russia, RUDN Univ, Moscow, Russia
  • 3 Mongolian Acad Sci, Inst Math & Digital Technol, Ulaanbaatar, Mongolia
  • 4 Saratov NG Chernyshevskii State Univ, Saratov, Russia
  • 5 Univ M Curie Sklodowska, Inst Phys, Lublin, Poland
  • 6 Inst Nucl Phys, Alma Ata, Kazakhstan
  • 7 Ho Chi Minh City Univ Educ, Ho Chi Minh City, Vietnam
Дата создания
20.04.2021
Дата изменения
20.04.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/73180/
Поделиться

Другие записи