Half-plane differential-difference elliptic problems with general-kind nonlocal potentials

In the half-plane, the Dirichlet problem is considered for elliptic differential-difference equations with nonlocal general-kind potentials, which are linear combinations of translations of the desired function, not bounded by commensurability conditions. We find a condition for the symbol of the corresponding differential-difference operator, providing the classical solvability of the specified problem for each continuous and bounded boundary-value function. The representation of the specified classical solution by a Poisson-type integral is constructed. © 2020 Informa UK Limited, trading as Taylor & Francis Group.

Авторы
Номер выпуска
5
Язык
Английский
Страницы
1101-1120
Статус
Опубликовано
Том
67
Год
2022
Организации
  • 1 JSC Concern “Sozvezdie”, Voronezh, Russian Federation
  • 2 Nikol'skii Mathematical Institute of Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
Ключевые слова
35J25; 35R10; Differential-difference equations; elliptic problems; incommensurable translations; nonlocal potentials; V. Volpert
Дата создания
20.04.2021
Дата изменения
13.09.2022
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/72774/
Поделиться

Другие записи