One-dimensional hydrogen atom: A singular potential in quantum mechanics

A generalized Laplace transform approach is developed to study the eigenvalue problem of the one-dimensional singular potential V = -e2/\x\. Matching of solutions at the origin that has been a matter of much controversy is, thereby, made redundant. A discrete and non-degenerate bound-state spectrum results. Existing arguments in the literature that advocate (a) a continuous spectrum, (b) a degeneracy of energy levels as a result of a hidden O(2) symmetry, (c) an infinite negative energy state and (d) an impenetrable barrier at the origin are found to be untenable. It is argued that a judicious use of generalized functions, coupled with some classical considerations, enables the conventional method of solving the problem to recover precisely the same results which are shown to be in accord with an accurate semiclassical analysis of the problem.

Авторы
Gordeyev A.N. 1, 2 , Chhajlany S.C.2
Редакторы
-
Издательство
-
Номер выпуска
19
Язык
Английский
Страницы
6893-6909
Статус
Опубликовано
Подразделение
-
Номер
-
Том
30
Год
1997
Организации
  • 1 Department of General Physics, Peoples' Friendship Univ. of Russia, Miklukho-Maklaya str. 6, Moscow 117198, Russian Federation
  • 2 Department of Physics, Eastern Mediterranean University, Gazi Magusa, Cyprus
Ключевые слова
-
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/722/