Venttsel boundary value problems with discontinuous data

We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the basis of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved. © 2021 Society for Industrial and Applied Mathematics.

Авторы
Apushkinskaya D.E. 1, 2 , Nazarov A.I.3 , Palagachev D.K.4 , Softova L.G.5
Номер выпуска
1
Язык
Английский
Страницы
221-252
Статус
Опубликовано
Том
53
Год
2021
Организации
  • 1 Saarland University, Saarbrücken, Germany
  • 2 Peoples' Friendship University of Russia (RUDN University), Moscow and Chebyshev Laboratory, St. Petersburg State Univeristy, St. Petersburg, Russian Federation
  • 3 St. Petersburg, Department of Steklov Institute, St. Petersburg State University, St. Petersburg, Russian Federation
  • 4 Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, 70125, Italy
  • 5 Department of Mathematics, University of Salerno, Fisciano (SA), 84084, Italy
Ключевые слова
A priori estimates; Maximal regularity; Quasilinear; Second-order elliptic equations; Strong solvability; Venttsel problem; VMO
Дата создания
20.04.2021
Дата изменения
20.04.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/71892/