Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations

We consider the inverse source problem of determining a source term depending on both time and space variables for fractional and classical diffusion equations in a cylindrical domain from boundary measurements. With suitable boundary conditions, we prove that some class of source terms which are independent of one space direction can be reconstructed from boundary measurements. Actually, we prove that this inverse problem is well-posed. We also establish some results of Lipschitz stability for the recovery of source terms which we apply to the stable recovery of time-dependent coefficients. © 2019 IOP Publishing Ltd.

Авторы
Kian Y.1 , Yamamoto M. 2, 3, 4
Редакторы
-
Журнал
Издательство
Institute of Physics Publishing
Номер выпуска
11
Язык
Английский
Страницы
-
Статус
Опубликовано
Подразделение
-
Номер
115006
Том
35
Год
2019
Организации
  • 1 Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
  • 2 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro, Tokyo, 153-8914, Japan
  • 3 Honorary Member of Academy of Romanian Scientists, Splaiul Independentei Street no 54, Bucharest, 050094, Romania
  • 4 Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
fractional diffusion equation; inverse source problems; reconstruction; stability estimate; well-posedness
Дата создания
02.11.2020
Дата изменения
02.11.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/65719/