The authors study an infinite dimensional duality theory finalized to obtain the existence of a strong duality between a convex optimization problem connected with the management of vaccinations and its Lagrange dual. Specifically, the authors show the solvability of a dual problem using as basic tool an hypothesis known as Assumption S. Roughly speaking, it requires to show that a particular limit is nonnegative. This technique improves the previous strong duality results that need the nonemptyness of the interior of the convex ordering cone. The authors use the duality theory to analyze the dynamic vaccination game in order to obtain the existence of the Lagrange multipliers related to the problem and to better comprehend the meaning of the problem. © 2018 Università degli Studi di Napoli "Federico II"