Bicompact Finite-Difference Scheme for Maxwell’s Equations in Layered Media

Abstract: In layered media, the solution of Maxwell’s equations suffers a strong or weak discontinuity at the layer boundaries. Finite-difference schemes providing convergence on strong discontinuities have been proposed for the first time. These are conservative bicompact two-point schemes with mesh nodes lying on the layer boundaries. A fundamentally new technique for taking into account the medium dispersion is proposed. All these features ensure the second order of accuracy of the schemes on discontinuous solutions. Numerical examples illustrating these results are given. © 2020, Pleiades Publishing, Ltd.

Авторы
Belov A.A. 1, 2 , Dombrovskaya Z.O.1
Журнал
Номер выпуска
3
Язык
Английский
Страницы
185-188
Статус
Опубликовано
Том
101
Год
2020
Организации
  • 1 Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
  • 2 RUDN University, Moscow, 117198, Russian Federation
Ключевые слова
bicompact schemes; conjugation conditions; layered media; material dispersion; Maxwell’s equations
Дата создания
02.11.2020
Дата изменения
02.11.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/64768/