Dynamics of solutions of a reaction-diffusion equation with delayed inhibition

Reaction-diffusion equation with a logistic production term and a delayed inhibition term is studied. Global stability of the homogeneous in space equilibrium is proved under some conditions on the delay term. In the case where these conditions are not satisfied, this solution can become unstable resulting in the emergence of spatiotemporal pattern formation studied in numerical simulations. © 2020 American Institute of Mathematical Sciences. All rights reserved.

Авторы
Touaoula T.M.1 , Frioui M.N.1 , Bessonov N.2 , Volpert V. 3, 4, 5, 6
Редакторы
-
Издательство
Southwest Missouri State University
Номер выпуска
9
Язык
Английский
Страницы
2425-2442
Статус
Опубликовано
Подразделение
-
Номер
-
Том
13
Год
2020
Организации
  • 1 Laboratoire d’Analyse Non linéaire et Mathématiques Appliquées, Département de Mathématiques, Université Aboubekr Belkaïd Tlemcen, Tlemcen, 13000, Algeria
  • 2 Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg, 199178, Russian Federation
  • 3 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
  • 4 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France
  • 5 INRIA, Université de Lyon, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 Novembre 1918, Villeurbanne Cedex, 69200, France
  • 6 Institute of Numerical Mathematics of the RAS, ul. Gubkina 8, Moscow, 119333, Russian Federation
Ключевые слова
Delay reaction-diffusion equation; Global attractor; Pattern formation
Дата создания
02.11.2020
Дата изменения
02.11.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/64462/