Hardy–Littlewood and Pitt's inequalities for Hausdorff operators

In this paper we study transformed trigonometric series with Hausdorff averages of Fourier coefficients. We prove Hardy–Littlewood and Pitt's inequalities for such series. The corresponding results for the Hausdorff averages of the Fourier transforms are also obtained. © 2018 Elsevier Masson SAS

Авторы
Dyachenko M.1 , Nursultanov E. 2, 3 , Tikhonov S.4, 5, 6
Редакторы
-
Издательство
Elsevier Masson SAS
Номер выпуска
-
Язык
Английский
Страницы
40-57
Статус
Опубликовано
Подразделение
-
Номер
-
Том
147
Год
2018
Организации
  • 1 Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow, 119991, Russian Federation
  • 2 Lomonosov Moscow State University (Kazakhstan Branch), Kazhimukan 11, Astana, 010010, Kazakhstan
  • 3 RUDN University, S.M. Nikolskii Mathematical Institute, Miklukho-Maklay 6, Moscow, 117198, Russian Federation
  • 4 Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, Bellaterra (Barcelona), 08193, Spain
  • 5 ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
  • 6 Universitat Autònoma de Barcelona, Spain
Ключевые слова
Fourier coefficients; Hardy–Littlewood theorem; Hausdorff operators; Pitt's inequality
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/6446/