Analysis of a versatile multi-class delay-loss system with a superimposed Markovian arrival process

We analyze the behavior of a multi-class single-server delay-loss system ∑xi MAPi/PH/1/m with a superposition of independent Markovian Arrival Processes as arrival stream and phase-type distributed service times. Considering the underlying finite Markov chain with its quasi-birth-and-death structure with two boundary sets, we derive a new representation of its steady-state vector by a linear combination of two matrix-geometric terms. Furthermore, we state efficient procedures to calculate the performance characteristics of this delay-loss system. © 1998 Elsevier Science B.V.

Авторы
Krieger U.R.1, 2 , Naoumov V. 3 , Wagner D.4
Редакторы
-
Издательство
Elsevier
Номер выпуска
2
Язык
Английский
Страницы
425-437
Статус
Опубликовано
Подразделение
-
Номер
-
Том
108
Год
1998
Организации
  • 1 Technologiezentrum, Deutsche Telekom AG, Am Kavalleriesand 3, D-64 295 Darmstadt, Germany
  • 2 Department of Computer Science, J.W. Goethe University, P.O. Box 111932, D-60054 Frankfurt, Germany
  • 3 Russian Academy of Sciences, IPIT, Peoples' Friendship University, 101 447 Moscow, Russian Federation
  • 4 Department of Computer Science, Technische Hochschule Darmstadt, Karolinenplatz 5, D-64 289 Darmstadt, Germany
Ключевые слова
Finite quasi-birth-and-death process; Matrix-geometric method; Multi-class delay-loss system; Queues
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/644/