Uniform boundedness of Kantorovich operators in Morrey spaces

In this paper, the Kantorovich operators Kn, n∈ N are shown to be uniformly bounded in Morrey spaces on the closed interval [0, 1]. Also an upper estimate is obtained for the difference Kn(f) - f for functions f of regularity of order 1 measured in Morrey spaces. One of the key tools is the pointwise inequality for the Kantorovich operators and the Hardy–Littlewood maximal operator, which is of interest on its own and can be applied to other problems related to the Kantorovich operators. © 2018, Springer International Publishing AG, part of Springer Nature.

Авторы
Burenkov V. 1 , Ghorbanalizadeh A.2 , Sawano Y. 1, 3
Редакторы
-
Журнал
Издательство
Birkhauser Verlag AG
Номер выпуска
4
Язык
Английский
Страницы
1097-1107
Статус
Опубликовано
Подразделение
-
Номер
-
Том
22
Год
2018
Организации
  • 1 S.M. Nikol’skii Mathematical Institute, Peoples’ Friendship University of Russia, Moscow, Russian Federation
  • 2 Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
  • 3 Department of Mathematics and Information Science, Tokyo Metropolitan University, Tokyo, Japan
Ключевые слова
Hardy–Littlewood maximal operator; Kantorovich operators; Morrey spaces
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/6437/