On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions

We solve the characterization problem of Lpv -Lrp weighted inequalities on Lebesgue cones of monotone functions on the half-axis for quasilinear integral operators of iterated type with Oinarov's kernels.

Авторы
Издательство
Eurasian Mathematical Journal
Номер выпуска
2
Язык
Английский
Страницы
47-73
Статус
Опубликовано
Том
8
Год
2017
Организации
  • 1 Department of Nonlinear Analysis and Optimization, RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
  • 2 Steklov Institute of Mathematics, 8 Gubkina St, Moscow, 119991, Russian Federation
  • 3 Department of Mathematics, Financial University under the Government of the Russian Federation, 49 Leningradsky Prospekt, Moscow, 125993, Russian Federation
Ключевые слова
Cone of monotone functions; Hardy type inequality; Oinarov's kernel; Quasilinear integral operator; Weighted Lebesgue space
Цитировать
Поделиться

Другие записи