Spectral boundary value problems for Laplace–Beltrami operator: Moduli of continuity of eigenvalues under domain deformation

The paper is pertaining to the spectral theory of operators and boundary value problems for differential equations on manifolds. Eigenvalues of such problems are studied as functionals on the space of domains. Resolvent continuity of the corresponding operators is established under domain deformation and estimates of continuity moduli of their eigenvalues/eigenfunctions are obtained provided the boundary of nonperturbed domain is locally represented as a graph of some continuous function and domain deformation is measured with respect to the Hausdorff–Pompeiu metric. © 2017 American Mathematical Society.

Авторы
Stepin A.M.1 , Tsylin I.V. 2
Сборник статей
Издательство
American Mathematical Society
Язык
Английский
Страницы
275-290
Статус
Опубликовано
Том
692
Год
2017
Организации
  • 1 Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russian Federation
  • 2 RUDN University, Moscow, Russian Federation
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/5974/
Поделиться

Другие записи