Existence of the n-th root in finite-dimensional power-associative algebras over reals

The paper is devoted to the solvability of equations in finite-dimensional powerassociative algebras over R: Necessary and sufficient conditions for the existence of the n-th root in a power-associative R-algebra are obtained. Sufficient solvability conditions for a specific class of polynomial equations in a power-associative R-algebra are derived.

Авторы
Редакторы
-
Издательство
Eurasian Mathematical Journal
Номер выпуска
3
Язык
Английский
Страницы
28-35
Статус
Опубликовано
Подразделение
-
DOI
-
Номер
-
Том
8
Год
2017
Организации
  • 1 Department of Higher Mathematics, Moscow Institute of Physics and Technology, Inststitutskii per., 9, Dolgoprudny, Moscow region, 141700, Russian Federation
  • 2 S.M. Nikol'skii Mathematical Institute, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
  • 3 S.M. Nikol'skii Mathematical Institute, Department of Nonlinear Analysis, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
Ключевые слова
Cayley-Dickson construction; Power-associative algebra; Real algebra
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/5951/