WELL-POSEDNESS OF A NONLOCAL BOUNDARY VALUE DIFFERENCE ELLIPTIC PROBLEM

The second order of approximation two-step difference scheme for the numerical solution of a nonlocal boundary value problem for the elliptic differential equation-v ''(t)+Av(t)=f(t)(0 <= t <= T),v(0)=v(T)+phi,integral 0Tv(s)ds=psi in an arbitrary Banach space E with the positive operator A is presented. The well-posedness of the difference scheme in Banach spaces is established. In applications, the stability, almost coercive stability and coercive stability estimates in maximum norm in one variable for the solutions of difference schemes for numerical solution of two type elliptic problems are obtained.

Авторы
Ashyralyev A. 1, 2, 3 , Hamad A.4, 5
Редакторы
-
Издательство
EDP Sciences
Номер выпуска
5
Язык
Английский
Страницы
-
Статус
Опубликовано
Подразделение
-
Ссылка
-
Номер
507
Том
14
Год
2019
Организации
  • 1 Near East Univ, Dept Math, Mersin 10, Lefkosa, Turkey
  • 2 Peoples Friendship Univ Russia RUDN Univ, Ul Miklukho Maklaya 6, Moscow 117198, Russia
  • 3 Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
  • 4 Near East Univ, Dept Math, Mersin 10, Nicosia, Turkey
  • 5 Omar Al Mukhtar Univ, Dept Math, El Beida, Libya
Ключевые слова
Well-posedness; coercive stability; positive operators; difference scheme
Дата создания
10.02.2020
Дата изменения
10.02.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/56637/