A stability result for the determination of order in time-fractional diffusion equations

This paper deals with an inverse problem of the determination of the fractional order in time-fractional diffusion equations from one interior point observation. We give a representation of the solution via the Mittag-Leffler function and eigenfunction expansion, from which the Lipschitz stability of the fractional order with respect to the measured data at the interior point is established. © 2019 Walter de Gruyter GmbH, Berlin/Boston 2019.

Авторы
Li Z.1 , Huang X.2 , Yamamoto M. 2, 3, 4
Редакторы
-
Издательство
Walter de Gruyter GmbH
Номер выпуска
-
Язык
Английский
Страницы
-
Статус
Опубликовано
Подразделение
-
Номер
-
Том
-
Год
2020
Организации
  • 1 School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong, 255049, China
  • 2 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
  • 3 Honorary Member of Academy of Romanian Scientists, Splaiul Independentei Street, no 54, Bucharest, 050094, Romania
  • 4 Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
inverse problem; Laplace transform; stability; Time-fractional diffusion equation
Дата создания
10.02.2020
Дата изменения
10.02.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/56597/