The global existence and asymptotic stability of solutions for a reaction–diffusion system

This paper studies the solutions of a reaction–diffusion system with nonlinearities that generalize the Lengyel–Epstein and FitzHugh–Nagumo nonlinearities. Sufficient conditions are derived for the global asymptotic stability of the solutions. Furthermore, we present some numerical examples. © 2019

Авторы
Bendoukha S.1 , Abdelmalek S.2 , Kirane M. 3, 4, 5
Издательство
Elsevier Ltd
Язык
Английский
Статус
Опубликовано
Номер
103052
Том
53
Год
2020
Организации
  • 1 Department of Electrical Engineering, College of Engineering, Yanbu, Taibah University, Saudi Arabia
  • 2 Department of Mathematics, University of Tebessa12002, Algeria
  • 3 LaSIE, Faculté des Sciences, Pole Sciences et Technologies, Université de La Rochelle, Avenue M. Crépeau, La Rochelle Cedex, 17042, France
  • 4 NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
  • 5 Peoples’ Friendship University of Russia (RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
Ключевые слова
FitzHugh–Nagumo model; Global asymptotic stability; Lengyel–Epstein system; Lyapunov functional; Reaction–diffusion equations
Дата создания
10.02.2020
Дата изменения
10.02.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/56491/