Maxwell, Yang-Mills, Weyl and eikonal fields defined by any null shear-free congruence

We show that (specifically scaled) equations of shear-free null geodesic congruences on the Minkowski space-time possess intrinsic self-dual, restricted gauge and algebraic structures. The complex eikonal, Weyl 2-spinor, SL(2,) Yang-Mills and complex Maxwell fields, the latter produced by integer-valued electric charges ("elementary" for the Kerr-like congruences), can all be explicitly associated with any shear-free null geodesic congruence. Using twistor variables, we derive the general solution of the equations of the shear-free null geodesic congruence (as a modification of the Kerr theorem) and analyze the corresponding "particle-like" field distributions, with bounded singularities of the associated physical fields. These can be obtained in a straightforward algebraic way and exhibit nontrivial collective dynamics simulating physical interactions. © 2017 World Scientific Publishing Company.

Авторы
Kassandrov V.V. 1 , Rizcallah J.A.2
Редакторы
-
Издательство
-
Номер выпуска
2
Язык
Английский
Страницы
-
Статус
Опубликовано
Подразделение
-
Номер
1750031
Том
14
Год
2017
Организации
  • 1 Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, Moscow, Russian Federation
  • 2 School of Education, Lebanese University, Beirut, Lebanon
Ключевые слова
dynamics of singularities; Kerr theorem; Kerr-Schild metrics; Twistors; Weyl equation
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/5633/