On the stability of nonlocal boundary value problem for a third order PDE

In the present paper, we study the nonlocal boundary value problem for third order partial differential equations in a Hilbert space with a self-adjoint positive definite operator. The main theorem on stability of this problem is established. In Applications, stability estimates for the solution of two problems for third order partial differential equations are obtained. © 2019 Author(s).

Авторы
Ashyralyev A. 1, 2, 3 , Belakroum K.4
Сборник материалов конференции
Язык
Английский
Статус
Опубликовано
Номер
070012
Том
2183
Год
2019
Организации
  • 1 Department of Mathematics, Near East University, Nicosia, Mersin 10, Turkey
  • 2 Peoples' Friendship University of Russia, RUDN University, Moscow, 117198, Russian Federation
  • 3 Institute of Mathematics and Mathematical Modeling, Almaty, 050010, Kazakhstan
  • 4 Department of Mathematics, Mentouri Brothers University, Constantine, Algeria
Ключевые слова
Boundary value problems; Self-adjoint positive definite operator; Stability
Дата создания
10.02.2020
Дата изменения
10.02.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/56288/
Поделиться

Другие записи