A REGULARITY CRITERION TO THE 3D BOUSSINESQ EQUATIONS

The paper deals with the regularity criterion for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution (u, theta) becomes regular provided that (del(h)u, del(h)theta) is an element of L-8/3 (0, T; B-infinity,B-infinity (R-3)). Our results improve and extend the well-known results of Fang-Qian [13] for the Navier-Stokes equations.

Авторы
Alghamdi A.M.1 , Ben Omrane I.2 , Gala S.3, 4 , Ragusa M.A. 4, 5
Издательство
Sobolev Institute of Mathematics
Язык
Английский
Страницы
1795-1804
Статус
Опубликовано
Том
16
Год
2019
Организации
  • 1 Umm Alqura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
  • 2 Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math, POB 90950, Riyadh 11623, Saudi Arabia
  • 3 Univ Mostaganem, Dept Math, Ecole Normale Super Mostaganem, Box 227, Mostaganem 27000, Algeria
  • 4 Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
  • 5 RUDN Univ, 6 Miklukho Maklay Str, Moscow 117198, Russia
Ключевые слова
Boussinesq equations; regularity criterion; weak solutions; Besov space
Дата создания
24.12.2019
Дата изменения
24.12.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/55830/