NEW BOUNDS FOR SHANNON, RELATIVE AND MANDELBROT ENTROPIES VIA ABEL-GONTSCHAROFF INTERPOLATING POLYNOMIAL

The Jensen's inequality has tremendous implications in many fields of modern analysis. It helps computing useful upper bounds for several entropic measures used in information theory. We use discrete and continuous cyclic refinements of Jensen's inequality and extend them from convex to higher order convex function by using new Green functions and Abel-Gontschamff interpolating polynomial. As an application of our work, we establish connection among new entropic bounds for Shanon, Relative and Mandelbrot entropies.

Авторы
Butt S.I.1 , Mehmood N.1 , Pecaric D.2 , Pecaric J. 3
Издательство
Element D.O.O.
Номер выпуска
4
Язык
Английский
Страницы
1283-1301
Статус
Опубликовано
Том
22
Год
2019
Организации
  • 1 COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
  • 2 Catholic Univ Croatia, Ilica 242, Zagreb, Croatia
  • 3 RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
Ключевые слова
n-convex function; Abel-Gontscharoff interpolating polynomial; new Green functions; Shannon entropy; relative entropy; Zipf-Mandelbrot entropy
Дата создания
24.12.2019
Дата изменения
24.12.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/55642/