INEQUALITIES OF THE EDMUNDSON-LAH-RIBARIC TYPE FOR SELFADJOINT OPERATORS IN HILBERT SPACES

By exploiting some scalar inequalities obtained via Hemline's interpolating polynomial, we will obtain lower and upper bounds for the difference in Jensen's inequality and in the Edmondson-Lah-Ribaric inequality for selfadjoint operators in Hilbert space that hold for the class of n -convex functions. As an application, main results are applied to quasi-arithmetic operator means, with a particular emphasis to power operator means.

Авторы
Mikic R.1 , Pecaric J. 2
Издательство
Element D.O.O.
Номер выпуска
4
Язык
Английский
Страницы
1193-1213
Статус
Опубликовано
Том
22
Год
2019
Организации
  • 1 Univ Zagreb, Fac Text Technol, Prilaz Baruna Filipovica 28a, Zagreb 10000, Croatia
  • 2 RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
Ключевые слова
Jensen inequality; Edmundson-Lah-Ribaric inequality; scalar product; n-convex functions; divided differences; operator means
Дата создания
24.12.2019
Дата изменения
24.12.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/55638/