Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces

In this paper, a necessary and sufficient condition, such as the Pontryagin’s maxi-mum principle for a fractional optimal control problem with concentrated parameters, is given by the ordinary fractional differential equation with a coefficient in weighted Lebesgue spaces. We discuss a formulation of fractional optimal control problems by a fractional differential equation in the sense of Caputo fractional derivative. The statement of the fractional optimal control problem is studied by using a new version of the increment method that essentially uses the concept of an adjoint equation of the integral form. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

Авторы
Bandaliyev R.A. 1, 3 , Mamedov I.G.2 , Mardanov M.J.1, 4 , Melikov T.K.1, 2
Редакторы
-
Журнал
Издательство
-
Номер выпуска
-
Язык
Английский
Страницы
-
Статус
Опубликовано
Подразделение
-
Номер
-
Том
-
Год
2019
Организации
  • 1 Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
  • 2 Institute of Control Systems of NAS of Azerbaijan, Baku, Azerbaijan
  • 3 S.M. Nikolskii Institute of Mathematics, RUDN University, Moscow, 117198, Russian Federation
  • 4 Baku State University, Baku, Azerbaijan
Ключевые слова
Caputo fractional derivative; Fractional optimal control problem; Initial value problem; Pontryagin’s maximum principle; Weighed Lebesgue spaces
Дата создания
24.12.2019
Дата изменения
24.12.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/55458/