Shells analysis in orthogonal curvilinear coordinate system with variation-difference method

The variation-difference method is a convenient numerical method for shells of complex forms. It is enough when only cinematic boundary conditions are satisfied because the method is based on the principle of Lagrange. Another advantage of the variation-difference method is the better opportunity to create computer programs based on it. For shell analysis in orthogonal coordinate system as well as for shell analysis in principal curvatures the system of equations describing stress-strain state can be simplified. In this paper the difference between analysis in orthogonal coordinate system and analysis in principal curvatures of the surface is considered. The main distinction of the analysis of shells in orthogonal curvilinear coordinate system is the necessity of determination of components which include curvature of torsion of coordinate lines. The addition of these components in the equations of the theory of shells for the coordinate system in principal curvatures gives possibility to analyze shells in common orthogonal coordinate system. In this article shell analysis in orthogonal coordinate system is applied to shells based on normal cyclic surfaces. © Published under licence by IOP Publishing Ltd.

Авторы
Сборник материалов конференции
Издательство
Institute of Physics Publishing
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
012066
Том
675
Год
2019
Организации
  • 1 Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
Ключевые слова
Numerical methods; Co-ordinate system; Coordinate lines; Orthogonal coordinates; Orthogonal curvilinear coordinates; Principal curvature; Stress strain state; System of equations; Variation-difference method; Shells (structures)
Дата создания
24.12.2019
Дата изменения
24.12.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/54867/
Поделиться

Другие записи