Рассматриваются системы стохастических дифференциальных уравнений, для которых риманово многообразие, порождаемое диффузионной матрицей, имеет нулевую кривизну. Предлагается метод вычисления характеристик решения рассматриваемых систем стохастических дифференциальных уравнений, который основывается на представлении функции плотности вероятности перехода через функциональный интеграл. Для вычисления возникающих функциональных интегралов используется разложение действия относительно классической траектории, для которой действие принимает экстремальное значение. Классическая траектория находится как решение многомерного уравнения Эйлера - Лагранжа.
Systems of stochastic differential equations, for which the Riemannian manifold generated by a diffusion matrix has zero curvature, are considered in this article. The method for approximate evaluation of characteristics of the solution of the systems of stochastic differential equations is proposed. This method is based on the representation of the probability density function through the functional integral. To compute functional integrals we use the expansion of action with respect to a classical trajectory, for which the action takes an extreme value. The classical trajectory is found as the solution of the multidimensional Euler - Lagrange equation.