Lyapunov stability analysis for the generalized Kapitza pendulum

In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum. © Published under licence by IOP Publishing Ltd.

Авторы
Druzhinina O.V.1, 3 , Sevastianov L.A. 2 , Vasilyev S.A. 2 , Vasilyeva D.G. 2
Сборник материалов конференции
Издательство
Institute of Physics Publishing
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
012011
Том
937
Год
2017
Организации
  • 1 Federal Research Center Computer Science and Control, Russian Academy of Sciences (FRC CSC RAS), 44/2 Vavilov St, Moscow, 119333, Russian Federation
  • 2 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
  • 3 V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences (ICS RAS), 65 Profsoyuznaya St, Moscow, 117997, Russian Federation
Ключевые слова
Mechanics; Stochastic systems; Driving forces; Lyapunov stability analysis; Periodic driving forces; Point moves; Quasi-periodic motion; Random motions; Pendulums
Цитировать
Поделиться

Другие записи